In the days following infection, when the human body develops and refines antibodies and prepares to mount an adaptive immune response, the bulwark of innate host defense against microbial infection is the polymorphonuclear leukocyte (PMN). PMNs seek out, identify, engulf, and sterilize invading microbes using both O2-dependent and O2-independent antimicrobial systems. A decrease in PMN numbers or function caused by immunosuppression or disease increases the risk of infection. In this issue of the JCI, Peyssonnaux et al. identify a novel and essential role for hypoxia-inducible factor–1α in regulating several important PMN functions relevant to host defense, including transcription of cationic antimicrobial polypeptides and induction of NO synthase.
Kol A. Zarember, Harry L. Malech
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 373 | 42 |
49 | 25 | |
Figure | 35 | 2 |
Citation downloads | 39 | 0 |
Totals | 496 | 69 |
Total Views | 565 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.