Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer
Masashi Akiyama, … , Daisuke Sawamura, Hiroshi Shimizu
Masashi Akiyama, … , Daisuke Sawamura, Hiroshi Shimizu
Published July 1, 2005
Citation Information: J Clin Invest. 2005;115(7):1777-1784. https://doi.org/10.1172/JCI24834.
View: Text | PDF
Research Article Dermatology Article has an altmetric score of 12

Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer

  • Text
  • PDF
Abstract

Harlequin ichthyosis (HI) is a devastating skin disorder with an unknown underlying cause. Abnormal keratinocyte lamellar granules (LGs) are a hallmark of HI skin. ABCA12 is a member of the ATP-binding cassette transporter family, and members of the ABCA subfamily are known to have closely related functions as lipid transporters. ABCA3 is involved in lipid secretion via LGs from alveolar type II cells, and missense mutations in ABCA12 have been reported to cause lamellar ichthyosis type 2, a milder form of ichthyosis. Therefore, we hypothesized that HI might be caused by mutations that lead to serious ABCA12 defects. We identify 5 distinct ABCA12 mutations, either in a compound heterozygous or homozygous state, in patients from 4 HI families. All the mutations resulted in truncation or deletion of highly conserved regions of ABCA12. Immunoelectron microscopy revealed that ABCA12 localized to LGs in normal epidermal keratinocytes. We confirmed that ABCA12 defects cause congested lipid secretion in cultured HI keratinocytes and succeeded in obtaining the recovery of LG lipid secretion after corrective gene transfer of ABCA12. We concluded that ABCA12 works as an epidermal keratinocyte lipid transporter and that defective ABCA12 results in a loss of the skin lipid barrier, leading to HI. Our findings not only allow DNA-based early prenatal diagnosis but also suggest the possibility of gene therapy for HI.

Authors

Masashi Akiyama, Yoriko Sugiyama-Nakagiri, Kaori Sakai, James R. McMillan, Maki Goto, Ken Arita, Yukiko Tsuji-Abe, Nobuko Tabata, Kentaro Matsuoka, Rikako Sasaki, Daisuke Sawamura, Hiroshi Shimizu

×

Figure 6

Options: View larger image (or click on image) Download as PowerPoint
Cultured HI keratinocytes carrying ABCA12 mutations showed abnormal cong...
Cultured HI keratinocytes carrying ABCA12 mutations showed abnormal congestion of lipid, and this phenotype was recovered by corrective ABCA12 gene transfer. (A–D) HI keratinocytes cultured in high Ca2+ conditions showed that glucosylceramide, a major component of LG lipid, was distributed densely around the nuclei (in a congested pattern) (green, FITC). Control normal human keratinocytes showed a widely distributed, diffuse glucosylceramide staining pattern. (E) Electron microscopic (EM) observation revealed, in cultured HI keratinocytes, that apparently amorphous, electron lucent LG-like structures (arrows) formed, but were not secreted. (F) Normal secretion of LG contents (arrow) in a control keratinocyte. (G–O) Before genetic correction, an HI patient cell showed weak ABCA12 immunostaining (red, TRITC) and a congested pattern of glucosylceramide staining (green, FITC) (J–L). After genetic correction, an HI patient cell demonstrated stronger ABCA12 labeling (red) and a normal distribution pattern of glucosylceramide (green) (M–O), similar to those of a normal human keratinocyte (G–I). (P) Corrective gene transfer resulted in a statistically significant increase in the number of cells with completely normal, widely distributed glucosylceramide patterns. *P < 0.02, Student's t test. Scale bars: 10 mm (A–D, G–O); 0.5 mm (E, F).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 3 X users
Referenced in 3 patents
Referenced in 2 Wikipedia pages
118 readers on Mendeley
See more details