Natural killer T (NKT) cells recognize glycolipid antigens presented by the MHC class I–related glycoprotein CD1d. The in vivo dynamics of the NKT cell population in response to glycolipid activation remain poorly understood. Here, we show that a single administration of the synthetic glycolipid α-galactosylceramide (α-GalCer) induces long-term NKT cell unresponsiveness in mice. NKT cells failed to proliferate and produce IFN-γ upon α-GalCer restimulation but retained the capacity to produce IL-4. Consequently, we found that activation of anergic NKT cells with α-GalCer exacerbated, rather than prevented, B16 metastasis formation, but that these cells retained their capacity to protect mice against experimental autoimmune encephalomyelitis. NKT cell anergy was induced in a thymus-independent manner and maintained in an NKT cell–autonomous manner. The anergic state could be broken by IL-2 and by stimuli that bypass proximal TCR signaling events. Collectively, the kinetics of initial NKT cell activation, expansion, and induction of anergy in response to α-GalCer administration resemble the responses of conventional T cells to strong stimuli such as superantigens. Our findings have important implications for the development of NKT cell–based vaccines and immunotherapies.
Vrajesh V. Parekh, Michael T. Wilson, Danyvid Olivares-Villagómez, Avneesh K. Singh, Lan Wu, Chyung-Ru Wang, Sebastian Joyce, Luc Van Kaer
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 662 | 117 |
138 | 52 | |
Figure | 493 | 6 |
Supplemental data | 35 | 4 |
Citation downloads | 54 | 0 |
Totals | 1,382 | 179 |
Total Views | 1,561 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.