The renin-angiotensin-aldosterone system controls blood pressure and salt-volume homeostasis. Renin, which is the first enzymatic step of the cascade, is critically regulated at the transcriptional level. In the present study, we investigated the role of liver X receptor α (LXRα) and LXRβ in the regulation of renin. In vitro, both LXRs could bind to a noncanonical responsive element in the renin promoter and regulated renin transcription. While LXRα functioned as a cAMP-activated factor, LXRβ was inversely affected by cAMP. In vivo, LXRs colocalized in juxtaglomerular cells, in which LXRα was specifically enriched, and interacted with the renin promoter. In mouse models, renin-angiotensin activation was associated with increased binding of LXRα to the responsive element. Moreover, acute administration of LXR agonists was followed by upregulation of renin transcription. In LXRα–/– mice, the elevation of renin triggered by adrenergic stimulation was abolished. Untreated LXRβ–/– mice exhibited reduced kidney renin mRNA levels compared with controls. LXRα–/–LXRβ–/– mice showed a combined phenotype of lower basal renin and blunted adrenergic response. In conclusion, we show herein that LXRα and LXRβ regulate renin expression in vivo by directly interacting with the renin promoter and that the cAMP/LXRα signaling pathway is required for the adrenergic control of the renin-angiotensin system.
Fulvio Morello, Rudolf A. de Boer, Knut R. Steffensen, Massimiliano Gnecchi, Jeffrey W. Chisholm, Frans Boomsma, Leonard M. Anderson, Richard M. Lawn, Jan-Åke Gustafsson, Marco Lopez-Ilasaca, Richard E. Pratt, Victor J. Dzau
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 311 | 79 |
100 | 31 | |
Figure | 291 | 17 |
Table | 52 | 0 |
Citation downloads | 79 | 0 |
Totals | 833 | 127 |
Total Views | 960 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.