Polycystin-1, the protein encoded by the principal gene involved in autosomal dominant polycystic kidney disease, has been implicated in extracellular sensing as well as in cell-cell and cell-matrix interactions. However, the precise mechanisms involved in polycystin-1 signaling are not well defined. A report in this issue of the JCI demonstrates that the C-terminal tail of polycystin-1 is cleaved from the membrane through regulated intramembrane proteolysis (RIP) and that this domain translocates to the nucleus, where it activates the AP-1 transcription pathway. This translocation appears to be modulated by polycystin-2, with which polycystin-1 is thought to interact. These findings provide what we believe to be the first evidence that polycystin-1 can signal directly to the nucleus and that polycystin-1–polycystin-2 interactions do not require colocalization of these proteins in the same membrane compartment.
Lisa M. Guay-Woodford
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 252 | 21 |
52 | 18 | |
Figure | 32 | 3 |
Citation downloads | 45 | 0 |
Totals | 381 | 42 |
Total Views | 423 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.