Recently, pathological prion protein PrPSc, the putative key constituent of infectious agents causing transmissible spongiform encephalopathies (TSEs), was found in muscles of rodents experimentally infected with scrapie and in patients with Creutzfeldt-Jakob disease (CJD). For the assessment of risk scenarios originating from these findings (e.g., alimentary transmission of pathogens associated with bovine spongiform encephalopathy [BSE] and chronic wasting disease [CWD] via tainted beef and game or iatrogenic dissemination of CJD agent through contaminated surgical instruments) more detailed information about the time course of PrPSc accumulation in muscles at preclinical and clinical stages of incubation is needed. Here we show that PrPSc in muscles of hamsters fed with scrapie can be detected prior to the onset of clinical symptoms, but that the bulk of PrPSc was deposited late in clinical disease. Additionally, regarding the question of how muscles become invaded, we report on the intramuscular location of PrPSc and substantial indications for centrifugal spread of infection from spinal motor neurons to myofibers. Our findings in a well-established animal model for TSEs contribute to a better assessment of the risks for public health emanating from “Prions in skeletal muscle” and provide new insights into the pathophysiological spread of TSE agents through the body.
Achim Thomzig, Walter Schulz-Schaeffer, Christine Kratzel, Jessica Mai, Michael Beekes
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 388 | 26 |
123 | 28 | |
Figure | 204 | 6 |
Table | 46 | 0 |
Citation downloads | 49 | 0 |
Totals | 810 | 60 |
Total Views | 870 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.