Ca2+ ions play a fundamental role in many cellular processes, and the extracellular concentration of Ca2+ is kept under strict control to allow the proper physiological functions to take place. The kidney, small intestine, and bone determine the Ca2+ flux to the extracellular Ca2+ pool in a concerted fashion. Transient receptor potential (TRP) cation channel subfamily V, members 5 and 6 (TRPV5 and TRPV6) have recently been postulated to be the molecular gatekeepers facilitating Ca2+ influx in these tissues and are members of the TRP family, which mediates diverse biological effects ranging from pain perception to male aggression. Genetic ablation of TRPV5 in the mouse allowed us to investigate the function of this novel Ca2+ channel in maintaining the Ca2+ balance. Here, we demonstrate that mice lacking TRPV5 display diminished active Ca2+ reabsorption despite enhanced vitamin D levels, causing severe hypercalciuria. In vivo micropuncture experiments demonstrated that Ca2+ reabsorption was malfunctioning within the early part of the distal convolution, exactly where TRPV5 is localized. In addition, compensatory hyperabsorption of dietary Ca2+ was measured in TRPV5 knockout mice. Furthermore, the knockout mice exhibited significant disturbances in bone structure, including reduced trabecular and cortical bone thickness. These data demonstrate the key function of TRPV5 in active Ca2+ reabsorption and its essential role in the Ca2+ homeostasis.
Joost G.J. Hoenderop, Johannes P.T.M. van Leeuwen, Bram C.J. van der Eerden, Ferry F.J. Kersten, Annemiete W.C.M. van derKemp, Anne-Marie Mérillat, Jan H. Waarsing, Bernard C. Rossier, Volker Vallon, Edith Hummler, René J.M. Bindels
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 619 | 105 |
82 | 43 | |
Figure | 175 | 2 |
Table | 36 | 0 |
Supplemental data | 37 | 7 |
Citation downloads | 74 | 0 |
Totals | 1,023 | 157 |
Total Views | 1,180 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.