Regulatory T cells (Tregs) are increasingly being recognized for their role in promoting tissue repair. In this issue of the JCI, Chen et al. found that Tregs at the site of bone injury contribute to bone repair. The CCL1/CCR8 chemokine system promoted the accumulation of Tregs at the site of bone injury, where Tregs supported skeletal stem cell (SSC) accumulation and osteogenic differentiation. CCL1 increased the transcription factor basic leucine zipper ATF-like transcription factor (BATF) in CCR8+ Tregs, which induced the secretion of progranulin that promoted SSC osteogenic function and new bone formation. This study highlights the ever-expanding role of Tregs in tissue repair by demonstrating their ability to expand stem cells at a site of injury.
Jason W. Griffith, Andrew D. Luster
Usage data is cumulative from January 2025 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,569 | 37 |
413 | 10 | |
Figure | 106 | 0 |
Citation downloads | 15 | 0 |
Totals | 2,103 | 47 |
Total Views | 2,150 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.