The insulin receptor substrate-2 (Irs2) branch of the insulin/IGF signaling system coordinates peripheral insulin action and pancreatic β cell function, so mice lacking Irs2 display similarities to humans with type 2 diabetes. Here we show that β cell–specific expression of Irs2 at a low or a high level delivered a graded physiologic response that promoted β cell growth, survival, and insulin secretion that prevented diabetes in Irs2–/– mice, obese mice, and streptozotocin-treated mice; and that upon transplantation, the transgenic islets cured diabetes more effectively than WT islets. Thus, pharmacological approaches that promote Irs2 expression in β cells, especially specific cAMP agonists, could be rational treatments for β cell failure and diabetes.
Anita M. Hennige, Deborah J. Burks, Umut Ozcan, Rohit N. Kulkarni, Jing Ye, Sunmin Park, Markus Schubert, Tracey L. Fisher, Matt A. Dow, Rebecca Leshan, Mark Zakaria, Mahmud Mossa-Basha, Morris F. White
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 652 | 291 |
113 | 38 | |
Figure | 407 | 24 |
Table | 59 | 0 |
Citation downloads | 55 | 0 |
Totals | 1,286 | 353 |
Total Views | 1,639 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.