Loss of Bcl2-associated athanogene 3 (BAG3) is associated with dilated cardiomyopathy (DCM). BAG3 regulates sarcomere protein turnover in cardiomyocytes; however, the function of BAG3 in other cardiac cell types is understudied. In this study, we used an isogenic pair of BAG3-knockout and wild-type human induced pluripotent stem cells (hiPSCs) to interrogate the role of BAG3 in hiPSC-derived cardiac fibroblasts (CFs). Analysis of cell type–specific conditional knockout engineered heart tissues revealed an essential contribution of CF BAG3 to contractility and cardiac fibrosis, recapitulating the phenotype of DCM. In BAG3–/– CFs, we observed an increased sensitivity to TGF-β signaling and activation of a fibrogenic response when cultured at physiological stiffness (8 kPa). Mechanistically, we showed that loss of BAG3 increased transforming growth factor-β receptor 2 (TGFBR2) levels by directly binding TGFBR2 and mediating its ubiquitination and proteasomal degradation. To further validate these results, we performed single-nucleus RNA sequencing of cardiac tissue from DCM patients carrying pathogenic BAG3 variants. BAG3 pathogenic variants increased fibrotic gene expression in CFs. Together, these results extend our understanding of the roles of BAG3 in heart disease beyond the cardiomyocyte-centric view and highlight the ability of tissue-engineered hiPSC models to elucidate cell type–specific aspects of cardiac disease.
Bryan Z. Wang, Margaretha A.J. Morsink, Seong Won Kim, Lori J. Luo, Xiaokan Zhang, Rajesh Kumar Soni, Roberta I. Lock, Jenny Rao, Youngbin Kim, Anran Zhang, Meraj Neyazi, Joshua M. Gorham, Yuri Kim, Kemar Brown, Daniel M. DeLaughter, Qi Zhang, Barbara McDonough, Josephine M. Watkins, Katherine M. Cunningham, Gavin Y. Oudit, Barry M. Fine, Christine E. Seidman, Jonathan G. Seidman, Gordana Vunjak-Novakovic
Usage data is cumulative from January 2025 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 4,050 | 169 |
763 | 51 | |
Figure | 868 | 0 |
Supplemental data | 924 | 26 |
Citation downloads | 49 | 0 |
Totals | 6,654 | 246 |
Total Views | 6,900 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.