Severe congenital neutropenia (SCN) is frequently associated with dominant point mutations in ELANE, the gene encoding neutrophil elastase (NE). Chronic administration of granulocyte colony-stimulating factor (G-CSF) is a first-line treatment of ELANE-mutant (ELANEmut) SCN. However, some ELANEmut patients including patients with ELANE start codon mutations do not respond to G-CSF. Here, through directed granulopoiesis of gene-edited isogenic normal and patient-derived iPSCs, we demonstrate that ELANE start codon mutations suffice to induce G-CSF resistant granulocytic precursor cell death and refractory SCN. ELANE start codon mutated neutrophil precursors express predominantly nuclear N-terminal truncated alternate NE. Unlike G-CSF sensitive ELANE mutations that induce endoplasmic reticulum and unfolded protein response stress, we found that the mutation of the ELANE translation initiation codon resulted in NE aggregates and activated pro-apoptotic aggrephagy as determined by downregulated BAG1 expression, decreased BAG1/BAG3 ratio, NE co-localization with BAG3, and localized expression of autophagic LC3B. We found that SERF1, an RNA-chaperone protein, known to localize in misfolded protein aggregates in neurodegenerative diseases, was highly upregulated and interacted with cytoplasmic NE of mutant neutrophil precursors. Silencing of SERF1 enhanced survival and differentiation of iPSC-derived neutrophil precursors, restoring their responsiveness to G-CSF. These observations provide a mechanistic insight of G-CSF-resistant ELANEmut SCN, revealing targets for therapeutic intervention.
Ramesh C. Nayak, Sana Emberesh, Lisa Trump, Ashley Wellendorf, Abhishek Singh, Brice Korkmaz, Marshall S. Horwitz, Kasiani C. Myers, Theodosia A. Kalfa, Carolyn Lutzko, Jose A. Cancelas
Usage data is cumulative from November 2024 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 808 | 0 |
161 | 0 | |
Supplemental data | 45 | 0 |
Citation downloads | 12 | 0 |
Totals | 1,026 | 0 |
Total Views | 1,026 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.