Suppression of antitumor immunity is a prominent feature of the tumor microenvironment. In this issue of the JCI, Taves, Otsuka, and authors show that glucocorticoids (GCs), which are potent immunosuppressive hormones mainly produced by the adrenals, can be reconverted from their inactive form to active metabolites via the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme expressed by murine tumor cell lines. In the tumor microenvironment, GCs acted on CD4+ regulatory T cells to enhance their immunosuppressive function and promote tumor growth. The findings suggest that targeting GC recycling as a strategy for modulating tumor immunosuppression has the potential to improve therapeutic efficacy of immune checkpoint blockade.
Julian Swatler, Young-Jun Ju, Ana C. Anderson, Enrico Lugli
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 689 | 149 |
143 | 61 | |
Figure | 77 | 1 |
Citation downloads | 73 | 0 |
Totals | 982 | 211 |
Total Views | 1,193 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.