Our study was to characterize sarcopenia in C57BL/6J mice using a clinically relevant definition to investigate the underlying molecular mechanisms. Aged male (23–32 months old) and female (27–28 months old) C57BL/6J mice were classified as non-, probable-, or sarcopenic based on assessments of grip strength, muscle mass, and treadmill running time, using 2 SDs below the mean of their young counterparts as cutoff points. A 9%–22% prevalence of sarcopenia was identified in 23–26 month-old male mice, with more severe age-related declines in muscle function than mass. Females aged 27–28 months showed fewer sarcopenic but more probable cases compared with the males. As sarcopenia progressed, a decrease in muscle contractility and a trend toward lower type IIB fiber size were observed in males. Mitochondrial biogenesis, oxidative capacity, and AMPK-autophagy signaling decreased as sarcopenia progressed in males, with pathways linked to mitochondrial metabolism positively correlated with muscle mass. No age- or sarcopenia-related changes were observed in mitochondrial biogenesis, OXPHOS complexes, AMPK signaling, mitophagy, or atrogenes in females. Our results highlight the different trajectories of age-related declines in muscle mass and function, providing insights into sex-dependent molecular changes associated with sarcopenia progression, which may inform the future development of novel therapeutic interventions.
Haiming L. Kerr, Kora Krumm, Barbara Anderson, Anthony Christiani, Lena Strait, Theresa Li, Brynn Irwin, Siyi Jiang, Artur Rybachok, Amanda Chen, Elizabeth Dacek, Lucas Caeiro, Gennifer E. Merrihew, James W. MacDonald, Theo K. Bammler, Michael J. MacCoss, Jose M. Garcia
Molecular markers for autophagy and AMPK signaling in skeletal muscles in young and old NonS, PS, and S male mice.