The mechanisms behind a lack of efficient fear extinction in some individuals are unclear. Here, by employing a principal components analysis–based approach, we differentiated the mice into extinction-resistant and susceptible groups. We determined that elevated synapsin 2a (Syn2a) in the infralimbic cortex (IL) to basolateral amygdala (BLA) circuit disrupted presynaptic orchestration, leading to an excitatory/inhibitory imbalance in the BLA region and causing extinction resistance. Overexpression or silencing of Syn2a levels in IL neurons replicated or alleviated behavioral, electrophysiological, and biochemical phenotypes in resistant mice. We further identified that the proline-rich domain H in the C-terminus of Syn2a was indispensable for the interaction with synaptogyrin-3 (Syngr3) and demonstrated that disrupting this interaction restored extinction impairments. Molecular docking revealed that ritonavir, an FDA-approved HIV drug, could disrupt Syn2a-Syngr3 binding and rescue fear extinction behavior in Syn2a-elevated mice. In summary, the aberrant elevation of Syn2a expression and its interaction with Syngr3 at the presynaptic site were crucial in fear extinction resistance, suggesting a potential therapeutic avenue for related disorders.
Xi-Ya Shen, Juan Zhang, He-Zhou Huang, Shao-Dan Li, Ling Zhou, Shi-Ping Wu, Cheng Tang, Xian Huang, Zhi-Qiang Liu, Zi-Yuan Guo, Xiang Li, Heng-Ye Man, You-Ming Lu, Ling-Qiang Zhu, Dan Liu
Usage data is cumulative from January 2024 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 2,734 | 442 |
840 | 186 | |
Figure | 582 | 26 |
Supplemental data | 300 | 47 |
Citation downloads | 83 | 0 |
Totals | 4,539 | 701 |
Total Views | 5,240 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.