The suppression mechanism of Tregs remains an intensely investigated topic. As our focus has shifted toward a model centered on indirect inhibition of DCs, a universally applicable effector mechanism controlled by the transcription factor forkhead box P3 (Foxp3) expression has not been found. Here, we report that Foxp3 blocked the transcription of ER Ca2+-release channel ryanodine receptor 2 (RyR2). Reduced RyR2 shut down basal Ca2+ oscillation in Tregs, which reduced m-calpain activities that are needed for T cells to disengage from DCs, suggesting a persistent blockage of DC antigen presentation. RyR2 deficiency rendered the CD4+ T cell pool immune suppressive and caused it to behave in the same manner as Foxp3+ Tregs in viral infection, asthma, hypersensitivity, colitis, and tumor development. In the absence of Foxp3, Ryr2-deficient CD4+ T cells rescued the systemic autoimmunity associated with scurfy mice. Therefore, Foxp3-mediated Ca2+ signaling inhibition may be a central effector mechanism of Treg immune suppression.
Xiaobo Wang, Shuang Geng, Junchen Meng, Ning Kang, Xinyi Liu, Yanni Xu, Huiyun Lyu, Ying Xu, Xun Xu, Xinrong Song, Bin Zhang, Xin Wang, Nuerdida Nuerbulati, Ze Zhang, Di Zhai, Xin Mao, Ruya Sun, Xiaoting Wang, Ruiwu Wang, Jie Guo, S.R. Wayne Chen, Xuyu Zhou, Tie Xia, Hai Qi, Xiaoyu Hu, Yan Shi
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 2,283 | 588 |
403 | 111 | |
Figure | 456 | 12 |
Supplemental data | 179 | 10 |
Citation downloads | 126 | 0 |
Totals | 3,447 | 721 |
Total Views | 4,168 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.