Cell therapies such as tumor-infiltrating lymphocyte (TIL) therapy have shown promise in the treatment of patients with refractory solid tumors, with improvement in response rates and durability of responses nevertheless sought. To identify targets capable of enhancing the antitumor activity of T cell therapies, large-scale in vitro and in vivo clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screens were performed, with the SOCS1 gene identified as a top T cell–enhancing target. In murine CD8+ T cell–therapy models, SOCS1 served as a critical checkpoint in restraining the accumulation of central memory T cells in lymphoid organs as well as intermediate (Texint) and effector (Texeff) exhausted T cell subsets derived from progenitor exhausted T cells (Texprog) in tumors. A comprehensive CRISPR tiling screen of the SOCS1-coding region identified sgRNAs targeting the SH2 domain of SOCS1 as the most potent, with an sgRNA with minimal off-target cut sites used to manufacture KSQ-001, an engineered TIL therapy with SOCS1 inactivated by CRISPR/Cas9. KSQ-001 possessed increased responsiveness to cytokine signals and enhanced in vivo antitumor function in mouse models. These data demonstrate the use of CRISPR/Cas9 screens in the rational design of T cell therapies.
Michael R. Schlabach, Sharon Lin, Zachary R. Collester, Christopher Wrocklage, Sol Shenker, Conor Calnan, Tianlei Xu, Hugh S. Gannon, Leila J. Williams, Frank Thompson, Paul R. Dunbar, Robert A. LaMothe, Tracy E. Garrett, Nicholas Colletti, Anja F. Hohmann, Noah J. Tubo, Caroline P. Bullock, Isabelle Le Mercier, Katri Sofjan, Jason J. Merkin, Sean Keegan, Gregory V. Kryukov, Caroline Dugopolski, Frank Stegmeier, Karrie Wong, Fiona A. Sharp, Louise Cadzow, Micah J. Benson
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 3,188 | 772 |
438 | 227 | |
Figure | 885 | 24 |
Supplemental data | 511 | 107 |
Citation downloads | 82 | 0 |
Totals | 5,104 | 1,130 |
Total Views | 6,234 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.