KRAS G12C inhibitors such as sotorasib and adagrasib are often effective in KRAS G12C–driven non–small cell lung cancer (NSCLC) patients. However, acquired resistance limits long-term patient survival. In this issue of the JCI, Tsai et al. present a comprehensive genetic analysis of multiple tumors with acquired sotorasib resistance obtained through an autopsy of a patient with KRAS G12C–mutant NSCLC. This analysis of pre- and posttreatment tumors uncovered cancer cell–intrinsic and –extrinsic features of resistance, including reactivation of KRAS-mediated signaling, reprogramming of metabolism, epithelial-mesenchymal transition, and tumor microenvironment changes. This elegant study demonstrates the multifaceted nature of KRAS G12C inhibitor clinical resistance and potential avenues to overcome resistance.
Tadashi Manabe, Trever G. Bivona
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 529 | 130 |
142 | 53 | |
Figure | 88 | 2 |
Citation downloads | 56 | 0 |
Totals | 815 | 185 |
Total Views | 1,000 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.