Immune checkpoint blockade (ICB) therapies are standard of care for the treatment of many solid tumors. While some patients with cancer experience exceptional and long-term responses, intrinsic and acquired mechanisms of resistance limit the clinical efficacy of ICBs. In addition, ICBs can elicit life-threatening side effects. Alternative options that can increase ICB responses without added toxicities are needed. In this issue of the JCI, Chakraborty et al. explored the role of estrogen receptor α (ERα) in modulating ICB activity. Using transcriptomics and preclinical melanoma models, the authors show that ERα signaling in tumor-associated macrophages contributed to an immune-suppressive state within the tumor microenvironment (TME) by promoting CD8+ T cell dysfunction and exhaustion. Further, in murine melanoma models, the addition of fulvestrant, a selective estrogen receptor downregulator (SERD) approved for the treatment of breast cancer, enhanced the antitumor effects of ICB. These results provide a rationale for human trials to test the combination of antiestrogens with ICBs.
James M. Rae, Marc E. Lippman
Model for estrogen remodeling of the TME.