Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system (CNS). Excitatory amino acid transporters (EAATs) regulate extracellular glutamate by transporting it into cells, mostly glia, to terminate neurotransmission and to avoid neurotoxicity. EAATs are also chloride (Cl–) channels, but the physiological role of Cl– conductance through EAATs is poorly understood. Mutations of human EAAT1 (hEAAT1) have been identified in patients with episodic ataxia type 6 (EA6). One mutation showed increased Cl– channel activity and decreased glutamate transport, but the relative contributions of each function of hEAAT1 to mechanisms underlying the pathology of EA6 remain unclear. Here we investigated the effects of 5 additional EA6-related mutations on hEAAT1 function in Xenopus laevis oocytes, and on CNS function in a Drosophila melanogaster model of locomotor behavior. Our results indicate that mutations resulting in decreased hEAAT1 Cl– channel activity but with functional glutamate transport can also contribute to the pathology of EA6, highlighting the importance of Cl– homeostasis in glial cells for proper CNS function. We also identified what we believe is a novel mechanism involving an ectopic sodium (Na+) leak conductance in glial cells. Together, these results strongly support the idea that EA6 is primarily an ion channelopathy of CNS glia.
Qianyi Wu, Azman Akhter, Shashank Pant, Eunjoo Cho, Jin Xin Zhu, Alastair Garner, Tomoko Ohyama, Emad Tajkhorshid, Donald J. van Meyel, Renae M. Ryan
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 819 | 249 |
124 | 53 | |
Figure | 391 | 2 |
Table | 40 | 0 |
Supplemental data | 487 | 1 |
Citation downloads | 65 | 0 |
Totals | 1,926 | 305 |
Total Views | 2,231 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.