Despite recent therapeutic gains in the treatment of advanced bladder cancer, the overall survival in patients with metastatic disease remains poor and further therapeutic discovery is needed. Advanced bladder cancer is a molecularly heterogeneous disease, and the identification of driver genetic alterations has led to effective targeted therapeutic agents, such as fibroblast growth factor receptor (FGFR) inhibitors. In this issue of the JCI, Bekele et al. identify a subtype of muscle-invasive bladder cancer (MIBC) that harbors RAF1 amplification. The authors showed that RAF1 inhibition, with pan-RAF inhibitors, and the combination of RAF1 inhibition with MEK inhibition were efficacious in preclinical models harboring RAF1 amplifications as well as in tumors with HRAS and NRAS mutations. This study highlights RAF1 amplification as a driver event in bladder cancer and establishes the central role of the MAPK pathway in bladder tumorigenesis.
Sean Clark-Garvey, William Y. Kim
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 517 | 53 |
94 | 39 | |
Figure | 94 | 1 |
Citation downloads | 77 | 0 |
Totals | 782 | 93 |
Total Views | 875 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.