Tubulointerstitial accumulation of matrix proteins in human kidney biopsies is the best predictor of renal survival. In this issue of the JCI, Yen-Ting Chen et al. elegantly show that an endoplasmic reticulum resident protein, thioredoxin domain containing 5 (TXNDC5), is a key mediator of experimental kidney fibrosis. The researchers used knockout or conditional knockout animals to reduce Txndc5 expression, which reduced the accumulation of fibrous tissue in three models of chronic kidney disease (CKD), including unilateral ureteral obstruction, unilateral ischemia reperfusion injury, and folic acid nephropathy. More importantly, the studies demonstrate that the activated fibroblasts are almost exclusively responsible for producing matrix proteins. The study also showed that reducing Txndc5 in mice after tubulointerstitial fibrosis (TIF) was established mitigated the fibrosis. These experiments have obvious clinical importance but warrant caution because a key question remains unanswered. The impact of reducing TXNDC5 on renal function itself, the very heart of CKD, demands further exploration.
Robert Safirstein
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 180 | 35 |
67 | 24 | |
Figure | 55 | 1 |
Citation downloads | 72 | 0 |
Totals | 374 | 60 |
Total Views | 434 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.