Atherosclerosis is an inflammatory condition of the arteries that has profound incidence and increasing prevalence. Although endothelial cells detect changes in blood flow, how endothelial activation contributes to atherogenic inflammation is not well understood. In this issue of the JCI, Alfaidi et al. used mouse models to explore flow-induced endothelial activation. The authors revealed a role for Nck1 and a specific activator of the innate immune response, the downstream interleukin receptor–associated kinase-1 (IRAK-1) in NF-κB–mediated inflammation and atherosclerosis susceptibility. These results link disturbed blood flow to NF-κB–mediated inflammation, which promotes atherosclerosis, and provide Nck1 as a potential target for the treatment of atherosclerosis.
Mary Wines-Samuelson, Sayantani Chowdhury, Bradford C. Berk
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 340 | 102 |
77 | 25 | |
Figure | 59 | 0 |
Citation downloads | 52 | 0 |
Totals | 528 | 127 |
Total Views | 655 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.