Signaling by the TGF-β superfamily is important in the regulation of hematopoiesis and is dysregulated in myelodysplastic syndromes (MDSs), contributing to ineffective hematopoiesis and clinical cytopenias. TGF-β, activins, and growth differentiation factors exert inhibitory effects on red cell formation by activating canonical SMAD2/3 pathway signaling. In this Review, we summarize evidence that overactivation of SMAD2/3 signaling pathways in MDSs causes anemia due to impaired erythroid maturation. We also describe the basis for biological activity of activin receptor ligand traps, novel fusion proteins such as luspatercept that are promising as erythroid maturation agents to alleviate anemia and related comorbidities in MDSs and other conditions characterized by impaired erythroid maturation.
Amit Verma, Rajasekhar N.V.S. Suragani, Srinivas Aluri, Nishi Shah, Tushar D. Bhagat, Mark J. Alexander, Rami Komrokji, Ravi Kumar
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,112 | 663 |
231 | 200 | |
Figure | 416 | 26 |
Citation downloads | 73 | 0 |
Totals | 1,832 | 889 |
Total Views | 2,721 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.