Organ-specific autoimmune diseases have been postulated to be the result of T cell response against organ-specific self-peptides bound to MHC molecules. Contrary to this paradigm, we report here that transgenic mice lacking MHC class I expression and expressing an MHC class II I-Ab molecule that presents only a single peptide (Eα52-68) spontaneously develops peripheral nervous system–specific autoimmune disease with many of the histopathological features found in experimental allergic neuritis. Reciprocal bone marrow chimeras produced using susceptible and resistant lines revealed that bone marrow–derived cells determined disease susceptibility. While the expression of the I-Ab–Eα52-68 complex in the periphery was readily detectable in both lines, its expression on thymic dendritic cells responsible for tolerance induction was markedly lower in the susceptible line than in the resistant line. Consistent with this, CD4+ T cells that can be activated by the I-Ab–Eα52-68 complex were found in the susceptible line, but not in the resistant line. Such CD4+ T cells conferred the disease to the resistant line by adoptive transfer, and administration of Ab specific for the I-Ab–Eα52-68 complex inhibited disease manifestation in the susceptible line. These results indicate that disease development involves systemic T cell reactivity to I-Ab–Eα52-68 complex, probably caused by incomplete negative thymocyte selection.
Takamasa Oono, Yoshinori Fukui, Sadahiko Masuko, Osamu Hashimoto, Takato Ueno, Terukazu Sanui, Ayumi Inayoshi, Mayuko Noda, Michio Sata, Takehiko Sasazuki
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 204 | 22 |
65 | 22 | |
Figure | 216 | 6 |
Table | 32 | 0 |
Citation downloads | 44 | 0 |
Totals | 561 | 50 |
Total Views | 611 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.