BACKGROUND NK cells are activated by innate cytokines and viral ligands to kill virus-infected cells. These functions are enhanced during secondary immune responses and after vaccination by synergy with effector T cells and virus-specific antibodies. In human Ebola virus infection, clinical outcome is strongly associated with the initial innate cytokine response, but the role of NK cells has not been thoroughly examined.METHODS The novel 2-dose heterologous Adenovirus type 26.ZEBOV (Ad26.ZEBOV) and modified vaccinia Ankara-BN-Filo (MVA-BN-Filo) vaccine regimen is safe and provides specific immunity against Ebola glycoprotein, and is currently in phase 2 and 3 studies. Here, we analyzed NK cell phenotype and function in response to Ad26.ZEBOV, MVA-BN-Filo vaccination regimen and in response to in vitro Ebola glycoprotein stimulation of PBMCs isolated before and after vaccination.RESULTS We show enhanced NK cell proliferation and activation after vaccination compared with baseline. Ebola glycoprotein–induced activation of NK cells was dependent on accessory cells and TLR-4–dependent innate cytokine secretion (predominantly from CD14+ monocytes) and enriched within less differentiated NK cell subsets. Optimal NK cell responses were dependent on IL-18 and IL-12, whereas IFN-γ secretion was restricted by high concentrations of IL-10.CONCLUSION This study demonstrates the induction of NK cell effector functions early after Ad26.ZEBOV, MVA-BN-Filo vaccination and provides a mechanism for the activation and regulation of NK cells by Ebola glycoprotein.TRIAL REGISTRATION ClinicalTrials.gov NCT02313077.FUNDING United Kingdom Medical Research Council Studentship in Vaccine Research, Innovative Medicines Initiative 2 Joint Undertaking, EBOVAC (grant 115861) and Crucell Holland (now Janssen Vaccines and Prevention B.V.), European Union’s Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations (EFPIA).
Helen R. Wagstaffe, Elizabeth A. Clutterbuck, Viki Bockstal, Jeroen N. Stoop, Kerstin Luhn, Macaya Douoguih, Georgi Shukarev, Matthew D. Snape, Andrew J. Pollard, Eleanor M. Riley, Martin R. Goodier
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 660 | 312 |
83 | 60 | |
Figure | 252 | 1 |
Table | 39 | 0 |
Supplemental data | 80 | 1 |
Citation downloads | 53 | 0 |
Totals | 1,167 | 374 |
Total Views | 1,541 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.