Intra-acinar cell activation of digestive enzyme zymogens including trypsinogen is generally believed to be an early and critical event in acute pancreatitis. We have found that the phosphatidylinositol 3-kinase inhibitor wortmannin can reduce the intrapancreatic activation of trypsinogen that occurs during two dissimilar experimental models of rodent acute pancreatitis, secretagogue- and duct injection-induced pancreatitis. The severity of both models was also reduced by wortmannin administration. In contrast, the NF-κB activation that occurs during the early stages of secretagogue-induced pancreatitis is not altered by administration of wortmannin. Ex vivo, caerulein-induced trypsinogen activation is inhibited by wortmannin and LY294002. However, the cytoskeletal changes induced by caerulein were not affected by wortmannin. Concentrations of caerulein that induced ex vivo trypsinogen activation do not significantly increase phosphatidylinositol-3,4-bisphosphate or phosphatidylinositol 3,4,5-trisphosphate levels or induce phosphorylation of Akt/PKB, suggesting that class I phosphatidylinositol 3-kinases are not involved. The concentration of wortmannin that inhibits trypsinogen activation causes a 75% decrease in phosphatidylinositol 3-phosphate, which is implicated in vesicle trafficking and fusion. We conclude that a wortmannin-inhibitable phosphatidylinositol 3-kinase is necessary for intrapancreatic activation of trypsinogen and regulating the severity of acute pancreatitis. Our observations suggest that phosphatidylinositol 3-kinase inhibition might be of benefit in preventing acute pancreatitis.
Vijay P. Singh, Ashok K. Saluja, Lakshmi Bhagat, Gijs J.D. van Acker, Albert M. Song, Stephen P. Soltoff, Lewis C. Cantley, Michael L. Steer
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 643 | 54 |
94 | 36 | |
Figure | 530 | 8 |
Citation downloads | 56 | 0 |
Totals | 1,323 | 98 |
Total Views | 1,421 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.