Excessive excretion of oxalate in the urine results in the formation of calcium oxalate crystals and subsequent kidney stone formation. Severe forms of hyperoxaluria, including genetic forms and those that result from ethylene glycol poisoning, can result in end-stage renal disease. Therapeutic interventions are limited and often rely on dietary intervention. In this issue of the JCI, Le Dudal and colleagues demonstrate that the lactate dehydrogenase 5 inhibitor (LDH5) stiripentol reduces urinary oxalate excretion. Importantly, stiripentol treatment of a single individual with primary hyperoxaluria reduced the urinary oxalate excretion. Together, these results support further evaluation of LDH5 as a therapeutic target for hyperoxaluria.
Jacob S. Stevens, Qais Al-Awqati
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 438 | 111 |
113 | 25 | |
Figure | 93 | 2 |
Citation downloads | 76 | 0 |
Totals | 720 | 138 |
Total Views | 858 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.