Tyrosine kinase domain (TKD) mutations contribute to acquired resistance to FMS-like tyrosine kinase 3 (FLT3) inhibitors used to treat FLT3-mutant acute myeloid leukemia (AML). We report a cocrystal structure of FLT3 with a type I inhibitor, NCGC1481, that retained potent binding and activity against FLT3 TKD and gatekeeper mutations. Relative to the current generation of advanced FLT3 inhibitors, NCGC1481 exhibited superior antileukemic activity against the common, clinically relevant FLT3-mutant AML cells in vitro and in vivo.
LaQuita M. Jones, Katelyn Melgar, Lyndsey Bolanos, Kathleen Hueneman, Morgan M. Walker, Jian-Kang Jiang, Kelli M. Wilson, Xiaohu Zhang, Jian Shen, Fan Jiang, Patrick Sutter, Amy Wang, Xin Xu, Gregory J. Tawa, Scott B. Hoyt, Mark Wunderlich, Eric O’Brien, John P. Perentesis, Daniel T. Starczynowski, Craig J. Thomas
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 619 | 182 |
124 | 47 | |
Figure | 199 | 20 |
Table | 65 | 0 |
Supplemental data | 205 | 19 |
Citation downloads | 76 | 0 |
Totals | 1,288 | 268 |
Total Views | 1,556 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.