The adenomatous polyposis coli (APC) gene plays, among other things, a crucial role in the regulation of cell proliferation and survival through its ability to regulate canonical Wnt signaling. In this issue of the JCI, Wang et al. provide an intriguing new mechanism for APC function involving the regulation of a novel long noncoding RNA (lncRNA), leading to changes in exosome production. APC signaling via this novel pathway can regulate cell proliferation and invasion as well as angiogenesis. In addition to enhancing our understanding of APC function, this new mechanism is of particular clinical significance, as it may provide additional targets for the treatment of APC-mutated cancers.
Pat J. Morin
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 533 | 67 |
152 | 35 | |
Figure | 72 | 2 |
Citation downloads | 59 | 0 |
Totals | 816 | 104 |
Total Views | 920 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.