The heart relies on mitochondria-derived energy production for continuous contraction and relaxation; therefore, the maintenance of a pool of healthy mitochondria is essential for sustaining normal cardiac performance. Mitophagy serves as a critical process for maintaining mitochondrial quality control and involves the PTEN-induced kinase 1/Parkin (Pink1/Parkin) pathway and autophagosomes labeled with the autophagy proteins autophagy-related 7 (ATG) and light chain 3 (LC3). In this issue of the JCI, Saito and colleagues identify an alternative pathway for mitophagy that utilizes the serine/threonine protein kinase Unc-51–like kinase 1 (Ulk1) and the small GTPase Rab9 to clear damaged mitochondria independently of conventional autophagy proteins. Together, the results of this study reveal that Ulk1 phosphorylation of Rab9 at serine 179 is critical for alternative mitophagy and cardioprotection under energy stress conditions.
Rimpy Dhingra, Inna Rabinovich-Nikitin, Lorrie A. Kirshenbaum
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 491 | 125 |
124 | 46 | |
Figure | 113 | 11 |
Citation downloads | 45 | 0 |
Totals | 773 | 182 |
Total Views | 955 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.