During developmental angiogenesis, blood vessels grow and remodel to ultimately build a hierarchical vascular network. Whether, how, cell death signaling molecules contribute to blood vessel formation is still not well understood. Caspase-8 (Casp-8), a key protease in the extrinsic cell death–signaling pathway, regulates cell death via both apoptosis and necroptosis. Here, we show that expression of Casp-8 in endothelial cells (ECs) is required for proper postnatal retina angiogenesis. EC-specific Casp-8–KO pups (Casp-8ECKO) showed reduced retina angiogenesis, as the loss of Casp-8 reduced EC proliferation, sprouting, and migration independently of its cell death function. Instead, the loss of Casp-8 caused hyperactivation of p38 MAPK downstream of receptor-interacting serine/threonine protein kinase 3 (RIPK3) and destabilization of vascular endothelial cadherin (VE-cadherin) at EC junctions. In a mouse model of oxygen-induced retinopathy (OIR) resembling retinopathy of prematurity (ROP), loss of Casp-8 in ECs was beneficial, as pathological neovascularization was reduced in Casp-8ECKO pups. Taking these data together, we show that Casp-8 acts in a cell death–independent manner in ECs to regulate the formation of the retina vasculature and that Casp-8 in ECs is mechanistically involved in the pathophysiology of ROP.
Nathalie Tisch, Aida Freire-Valls, Rosario Yerbes, Isidora Paredes, Silvia La Porta, Xiaohong Wang, Rosa Martín-Pérez, Laura Castro, Wendy Wei-Lynn Wong, Leigh Coultas, Boris Strilic, Hermann-Josef Gröne, Thomas Hielscher, Carolin Mogler, Ralf H. Adams, Peter Heiduschka, Lena Claesson-Welsh, Massimiliano Mazzone, Abelardo López-Rivas, Thomas Schmidt, Hellmut G. Augustin, Carmen Ruiz de Almodovar
Loss of Casp-8 in ECs does not result in vessel regression or necroptosis.