Normal glomerular capillaries filter plasma through a basement membrane (GBM) rich in alpha3(IV), alpha4(IV), and alpha5(IV) chains of type IV collagen. We now show that these latter isoforms are absent biochemically from the glomeruli in patients with X-linked Alport syndrome (XAS). Their GBM instead retain a fetal distribution of alpha1(IV) and alpha2(IV) isoforms because they fail to developmentally switch their alpha-chain use. The anomalous persistence of these fetal isoforms of type IV collagen in the GBM in XAS also confers an unexpected increase in susceptibility to proteolytic attack by collagenases and cathepsins. The incorporation of cysteine-rich alpha3(IV), alpha4(IV), and alpha5(IV) chains into specialized basement membranes like the GBM may have normally evolved to protectively enhance their resistance to proteolytic degradation at the site of glomerular filtration. The relative absence of these potentially protective collagen IV isoforms in GBM from XAS may explain the progressive basement membrane splitting and increased damage as these kidneys deteriorate.
R Kalluri, C F Shield, P Todd, B G Hudson, E G Neilson
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 380 | 76 |
70 | 69 | |
Citation downloads | 66 | 0 |
Totals | 516 | 145 |
Total Views | 661 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.