The ability of HIV-1 to establish an infection and replicate to high copy number in CD4 lymphocytes is dependent on both the activation state of the cell and virus-encoded regulatory proteins that modulate viral gene expression. To study these required virus-cell interactions, we have used an in vitro cell model of acute HIV infection of quiescent, primary CD4 lymphocytes and subsequent induction of T cell activation and virus replication by lectin or CD3 receptor cross-linking. Experiments were done to determine if the capacity of HIV to establish infection and complete replication was impacted by the maturational state of the CD4 cell target or the specific signal induction pathway engaged during activation. Primary CD4 cells were FACS-sorted into the major phenotypic subsets representative of memory (CD45RO) and naive (CD45RA) cells. Levels of virus replication were compared between infection with wild-type NL4-3 virus and an isogenic mutant containing a deletion in nef regulatory gene. PHA mitogen stimulation was compared with anti-CD3, with and without anti-CD28 costimulation, for induction of cell proliferation and virus replication. In both infected and uninfected cells, the RA cell subset exhibited significantly greater response to CD3/CD28 stimulation than did the RO cell subset. In contrast, the majority of virus replication occurred consistently in the RO cell subset. Deletion of HIV nef function caused a severe reduction in viral replication, especially in the RA naive cell subset after CD3 induction. PCR analysis of viral DNA formation, during infection of quiescent cells, demonstrated that the observed differences in HIV replication capacity between RO and RA cell subsets were not due to inherent differences in cell susceptibility to infection. Our results indicate that HIV replication is enhanced selectively in CD45RO memory phenotype cells through the probable contribution of specialized cellular factors which are produced during CD3-initiated signal transduction.
C A Spina, H E Prince, D D Richman
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 210 | 44 |
157 | 31 | |
Figure | 9 | 0 |
Citation downloads | 51 | 0 |
Totals | 427 | 75 |
Total Views | 502 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.