High calcium intake during childhood has been suggested to increase bone mass accrual, potentially resulting in a greater peak bone mass. Whether the effects of calcium supplementation on bone mass accrual vary from one skeletal region to another, and to what extent the level of spontaneous calcium intake may affect the magnitude of the response has, however, not yet been clearly established. In a double-blind, placebo-controlled study, 149 healthy prepubertal girls aged 7.9+/-0.1 yr (mean+/-SEM) were either allocated two food products containing 850 mg of calcium (Ca-suppl.) or not (placebo) on a daily basis for 1 yr. Areal bone mineral density (BMD), bone mineral content (BMC), and bone size were determined at six sites by dual-energy x-ray absorptiometry. The difference in BMD gain between calcium-supplemented (Ca-suppl.) and placebo was greater at radial (metaphysis and diaphysis) and femoral (neck, trochanter, and diaphyses) sites (7-12 mg/cm2 per yr) than in the lumbar spine (2 mg/cm2 per yr). The difference in BMD gains between Ca-suppl. and placebo was greatest in girls with a spontaneous calcium intake below the median of 880 mg/d. The increase in mean BMD of the 6 sites in the low-calcium consumers was accompanied by increased gains in mean BMC, bone size, and statural height. These results suggest a possible positive effect of calcium supplementation on skeletal growth at that age. In conclusion, calcium-enriched foods significantly increased bone mass accrual in prepubertal girls, with a preferential effect in the appendicular skeleton, and greater benefit at lower spontaneous calcium intake.
J P Bonjour, A L Carrie, S Ferrari, H Clavien, D Slosman, G Theintz, R Rizzoli
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 472 | 223 |
93 | 101 | |
Citation downloads | 41 | 0 |
Totals | 606 | 324 |
Total Views | 930 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.