We studied the in vivo mechanism of beta-adrenergic receptor (beta-AR) hyporesponsiveness induced by intratracheal instillation of interleukin-1beta (IL-1beta, 500 U) in Brown-Norway rats. Tracheal and bronchial smooth muscle responses were measured under isometric conditions ex vivo. Contractile responses to electrical field stimulation and to carbachol were not altered, but maximal relaxation induced by isoproterenol (10(-6)-10(-5) M) was significantly reduced 24 h after IL-1beta treatment in tracheal tissues and to a lesser extent, in the main bronchi. Radioligand binding using [125I]iodocyanopindolol revealed a 32+/-7% reduction in beta-ARs in lung tissues from IL-1beta-treated rats, without any significant changes in beta2-AR mRNA level measured by Northern blot analysis. Autoradiographic studies also showed significant reduction in beta2-AR in the airways. Isoproterenol-stimulated cyclic AMP accumulation was reduced by IL-1beta at 24 h in trachea and lung tissues. Pertussis toxin reversed this hyporesponsiveness to isoproterenol but not to forskolin in lung tissues. Western blot analysis revealed an IL-1beta-induced increase in Gi(alpha) protein expression. Thus, IL-1beta induces an attenuation of beta-AR-induced airway relaxation through mechanisms involving a reduction in beta-ARs, an increase in Gi(alpha) subunit, and a defect in adenylyl cyclase activity.
H Koto, J C Mak, E B Haddad, W B Xu, M Salmon, P J Barnes, K F Chung
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 153 | 14 |
48 | 13 | |
Citation downloads | 57 | 0 |
Totals | 258 | 27 |
Total Views | 285 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.