Type 2 iodothyronine deiodinase (D2) is a recently cloned selenodeiodinase thought to provide intracellular 3,5,3' triiodothyronine (T3) to a restricted group of tissues. We report here the presence of D2 mRNA in human thyroid at levels 50-150-fold higher than in placenta. Surprisingly, while type 1 deiodinase (D1) is known to be present in human thyroid, D2 has not been evaluated previously. D2 mRNA was especially high in thyroids from Graves' patients and in follicular adenomas. Stimulated thyroids had higher D2 to D1 mRNA ratios than normal or multinodular glands suggesting differential regulation of D1 and D2 expression. Microsomes from normal, Graves', and TSH-stimulated thyroids contained low Km D2 activity resistant to propylthiouracil (1 mM) or to inactivation by N-bromoacetyl T3, agents which block or inactivate D1. At 2 nM thyroxine (T4), 100 times the physiological-free T4 levels, 60-80% of T4 to T3 conversion in stimulated, but only 27% of that in normal thyroids, is catalyzed by D2. We conclude that intrathyroidal T4 to T3 conversion by D2 may contribute significantly to the relative increase in thyroidal T3 production in patients with Graves' disease, toxic adenomas, and, perhaps, iodine deficiency.
D Salvatore, H Tu, J W Harney, P R Larsen
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 210 | 84 |
66 | 50 | |
Citation downloads | 57 | 0 |
Totals | 333 | 134 |
Total Views | 467 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.