When phagocyte CR3 binds to iC3b on bacteria or yeast, phagocytosis and degranulation are triggered because of simultaneous recognition of iC3b via a CD11b I-domain binding site and specific microbial polysaccharides via a lectin site located COOH-terminal to the I-domain. By contrast, when phagocyte or natural killer (NK) cell CR3 adheres to iC3b on erythrocytes or tumor cells that lack CR3-binding membrane polysaccharides, neither lysis nor cytotoxicity are stimulated. This investigation showed that soluble CR3-specific polysaccharides such as beta-glucan induced a primed state of CR3 that could trigger killing of iC3b-target cells that were otherwise resistant to cytotoxicity. Anti-CR3 added before sugars prevented priming, whereas anti-CR3 added after sugars blocked primed CR3 attachment to iC3b-targets. Polysaccharide priming required tyrosine kinase(s) and a magnesium-dependent conformational change of the I-domain that exposed the CBRM1/5 activation epitope. Unlike LPS or cytokines, polysaccharides did not up-regulate neutrophil CR3 expression nor expose the mAb 24 reporter epitope representing the high affinity ICAM-1-binding state. The current data apparently explain the mechanism of tumoricidal beta-glucans used for immunotherapy. These polysaccharides function through binding to phagocyte or NK cell CR3, priming the receptor for cytotoxicity of neoplastic tissues that are frequently targeted with iC3b and sparing normal tissues that lack iC3b.
V Vetvicka, B P Thornton, G D Ross
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 684 | 78 |
79 | 69 | |
Citation downloads | 53 | 0 |
Totals | 816 | 147 |
Total Views | 963 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.