IgM paraproteins associated with autoimmune peripheral neuropathy and anti-Pr cold agglutinins react with sialic acid epitopes present on disialylated gangliosides including GD1b, GT1b, GQ1b, and GD3. A causal relationship between the paraprotein and the neuropathy has never been proven experimentally. From peripheral blood B cells of an affected patient, we have cloned a human hybridoma secreting an antidisialosyl IgM mAb, termed Ha1, that shows identical structural and functional characteristics to its serum counterpart. Variable region analysis shows Ha1 is encoded by the same VH1 family heavy chain gene, V1-18, as the only other known anti-Pr antibody sequence and is somatically mutated, suggesting that it [correction of is] arose in vivo in response to antigenic stimulation. In the rodent peripheral nervous system, Ha1 immunolocalizes to dorsal root ganglia, motor nerve terminals, muscle spindles, myelinated axons, and nodes of Ranvier. After intraperitoneal injection of affinity-purified antibody into mice for 10 d, electrophysiological recordings from the phrenic nerve-hemidiaphragm preparation demonstrated impairment of nerve excitability and a reduction in quantal release of neurotransmitter. These data unequivocally establish that an antidisialosyl antibody can exert pathophysiological effects on the peripheral nervous system and strongly support the view that the antibody contributes to the associated human disease.
H J Willison, G M O'Hanlon, G Paterson, J Veitch, G Wilson, M Roberts, T Tang, A Vincent
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 132 | 41 |
47 | 57 | |
Citation downloads | 43 | 0 |
Totals | 222 | 98 |
Total Views | 320 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.