The presence of oxysterols in macrophages isolated from atherosclerotic tissue and the effect of oxysterols on the regulation of lipoprotein lipase (LPL) mRNA were studied. Both rabbit and human macrophages, freshly isolated from atherosclerotic aorta, show about the same distribution of oxysterols, analyzed by isotope dilution mass spectrometry, except that all three preparations of human arterial-derived macrophages contained high levels of 27-hydroxycholesterol, which was not found in rabbit macrophages. To determine if oxysterols regulate LPL expression, human monocyte-derived macrophages were incubated with different oxysterols. Incubation with 7 beta-hydroxycholesterol and 25-hydroxycholesterol resulted in a 70-75% reduction of LPL mRNA, analyzed by quantitative RT-PCR. Cholesterol and other tested oxysterols showed no effect on macrophage LPL mRNA expression compared with control. LPL activity in the medium was also reduced after exposure of the macrophages to 7 beta-hydroxycholesterol and 25-hydroxycholesterol. In conclusion, we have demonstrated accumulation of oxysterols in macrophage-derived foam cells isolated from atherosclerotic aorta. There was suppression of LPL mRNA in human monocyte-derived macrophages after incubation with 7 beta-hydroxycholesterol and 25-hydroxycholesterol. It is tempting to suggest that an exposure to oxysterols may explain our earlier observation of a low level of LPL mRNA in arterial foam cells.
L M Hultén, H Lindmark, U Diczfalusy, I Björkhem, M Ottosson, Y Liu, G Bondjers, O Wiklund
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 175 | 15 |
53 | 20 | |
Citation downloads | 65 | 0 |
Totals | 293 | 35 |
Total Views | 328 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.