We previously generated transgenic mice expressing human apolipoprotein (apo-) B and demonstrated that the plasma of chow-fed transgenic animals contained markedly increased amounts of LDL (Linton, M. F., R. V. Farese, Jr., G. Chiesa, D. S. Grass, P. Chin, R. E. Hammer, H. H. Hobbs, and S. G. Young 1992. J. Clin. Invest. 92:3029-3037). In this study, we fed groups of transgenic and nontransgenic mice either a chow diet or a diet high in fat (16%) and cholesterol (1.25%). Lipid and lipoprotein levels were assessed, and after 18 wk of diet, the extent of aortic atherosclerotic lesions in each group of animals was quantified. Compared with the female transgenic mice on the chow diet, female transgenic mice on the high-fat diet had higher plasma levels of cholesterol (312 +/- 17 vs 144 +/- 7 mg/dl; P < 0.0001) and human apo-B (120 +/- 8 vs 84 +/- 3 mg/dl; P < 0.0001). The higher human apo-B levels were due to increased plasma levels of human apo-B48; the human apo-B100 levels did not differ in animals on the two diets. In mice on the high-fat diet, most of the human apo-B48 and apo-B100 was found in LDL-sized particles. Compared with nontransgenic mice on the high-fat diet, the transgenic animals on the high-fat diet had significantly increased levels of total cholesterol (312 +/- 17 vs 230 +/- 19 mg/dl; P < 0.0001) and non-HDL cholesterol (283 +/- 17 vs 193 +/- 19 mg/dl; P < 0.0001). The extent of atherosclerotic lesion development within the ascending aorta was quantified by measuring total lesion area in 60 progressive sections, using computer-assisted image analysis. Neither the chow-fed transgenic mice nor the chow-fed nontransgenic mice had significant atherosclerotic lesions. Nontransgenic animals on the high-fat diet had relatively small atherosclerotic lesions (< 15,000 microns 2/section), almost all of which were confined to the proximal 400 microns of the aorta near the aortic valve. In contrast, transgenic animals on the high-fat diet had extensive atherosclerotic lesions (> 160,000 microns 2/section) that were widely distributed throughout the proximal 1,200 microns of the aorta. Thus, human apo-B expression, in the setting of a diet rich in fats, causes severe atherosclerosis in mice.
D A Purcell-Huynh, R V Farese Jr, D F Johnson, L M Flynn, V Pierotti, D L Newland, M F Linton, D A Sanan, S G Young
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 310 | 2 |
66 | 45 | |
Figure | 0 | 12 |
Scanned page | 473 | 43 |
Citation downloads | 53 | 0 |
Totals | 902 | 102 |
Total Views | 1,004 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.