Hyperproinsulinemia in non-insulin-dependent diabetes mellitus (NIDDM) is due to an increased release of proinsulin from pancreatic beta cells. This could reside in increased secretory demand placed on the beta cell by hyperglycemia or in the proinsulin conversion mechanism. In this study, biosynthesis of the proinsulin conversion enzymes (PC2, PC3, and carboxypeptidase-H [CP-H]) and proinsulin, were examined in islets isolated from 48-h infused rats with 50% (wt/vol) glucose (hyperglycemic, hyperinsulinemic, and increased pancreatic proinsulin to insulin ratio), 20% (wt/vol) glucose (normoglycemic but hyperinsulinemic), and 0.45% (wt/vol) saline (controls). A decrease in the islet content of PC2, PC3, and CP-H from hyperglycemic rats was observed. This reduction did not correlate with any deficiency in mRNA levels or biosynthesis of PC2, PC3, CP-H, or proinsulin. Furthermore, proinsulin conversion rate was comparable in islets from hyperglycemic and control rats. However, in islets from hyperglycemic rats an abnormal increased proportion of proinsulin was secreted, that was accompanied by an augmented release of PC2, PC3 and CP-H. Stimulation of the beta cell's secretory pathway by hyperglycemia, resulted in proinsulin being prematurely secreted from islets before its conversion could be completed. Thus, hyperproinsulinemia induced by chronic hyperglycemia likely results from increased beta cell secretory demand, rather than a defect in the proinsulin processing enzymes per se.
C Alarcón, J L Leahy, G T Schuppin, C J Rhodes
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 157 | 2 |
59 | 28 | |
Scanned page | 274 | 4 |
Citation downloads | 49 | 0 |
Totals | 539 | 34 |
Total Views | 573 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.