To determine the pathway of plasma FFA oxidation and the site(s) of label fixation observed during infusion of FFA tracers, [1-13C]palmitate and [1-14C]acetate were infused intravenously for 3 h in five volunteers. Breath 13CO2 enrichment and 14CO2 specific activity were followed for 6 h to determine the labeled CO2 decay rates. Acetate enters directly into the TCA cycle; hence, if palmitate transits a large lipid pool before oxidation, 13CO2 enrichment (from palmitate) should decay slower than 14CO2 specific activity (from acetate). Breath 13CO2 enrichment and 14CO2 specific activity decayed at a similar rate after stopping the tracer infusions (half-lives of 13CO2 and 14CO2 decay: mean [+/- SE] 106.6 +/- 8.9 min, and 96.9 +/- 6.0 min, respectively, P = NS), which suggests that palmitate enters the TCA cycle directly and that label fixation occurs after citrate synthesis. Significant label fixation was shown in plasma glutamate/glutamine and lactate/pyruvate during infusion of either [1,2-13C]acetate or [U-13C]palmitate, suggesting that TCA cycle exchange reactions are at least partly responsible for label fixation. This was consistent with our finding that the half-lives of 13CO2 enrichment and 14CO2 specific activity decreased significantly during exercise to 14.4 +/- 3 min and 16.8 +/- 1 min, respectively, since exercise significantly increases the rate of the TCA cycle in relation to that of the TCA cycle exchange reactions. We conclude that plasma FFA entering cells destined to be oxidized are directly oxidized and that tracer estimates of plasma FFA oxidation will underestimate the true value unless account is taken of the extent of label fixation.
L S Sidossis, A R Coggan, A Gastaldelli, R R Wolfe
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 163 | 10 |
72 | 39 | |
Scanned page | 252 | 3 |
Citation downloads | 47 | 0 |
Totals | 534 | 52 |
Total Views | 586 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.