Regulation of cytosolic Ca2+ and cytosolic Na+ is critical for lymphocyte cation homeostasis and function. To examine the influence of cytosolic Na+ on Ca2+ regulation in human peripheral blood lymphocytes, Ca2+ entry and cytosolic Ca2+ (measured with fura-2) were monitored in cells in which cytosolic Na+ was increased and/or the Na+ gradient was decreased by reduction of external Na+ concentration. Ouabain-treated cells (0.1 mM for 30 min at 37 degrees C), suspended in Na(+)-free medium, showed a 30-65% increase in Ca2+ uptake compared to cells in 140 mM Na+ medium. Enhanced Ca2+ influx was entirely dependent on ouabain pretreatment and reversal of the Na+ gradient. Na pump inhibition or Na ionophore addition and subsequent exposure to Na(+)-free medium resulted in a sustained elevation of cytosolic Ca2+. As preincubation of cells in Ca(2+)-free medium further enhanced the ouabain-dependent increase in cytosolic Ca2+, the effects of the microsomal Ca(2+)-ATPase inhibitor thapsigargin on Ca2+ influx and cytosolic Ca2+ were studied. Thapsigargin stimulated Ca2+ entry following ouabain pretreatment and reversal of the Na+ gradient; the effects of thapsigargin were retained in the presence of LaCl3, a potent inhibitor of store-dependent calcium influx pathways. These results show lymphocytes demonstrate Na+/Ca2+ exchange activity and suggest the Na+/Ca2+ exchanger modulates cytosolic Ca2+ following intracellular Ca2+ store depletion.
M Balasubramanyam, C Rohowsky-Kochan, J P Reeves, J P Gardner
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 120 | 2 |
51 | 20 | |
Scanned page | 241 | 5 |
Citation downloads | 66 | 0 |
Totals | 478 | 27 |
Total Views | 505 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.