Inbred mouse strains fed a diabetogenic diet have different propensities to develop features analogous to type 2 diabetes mellitus. To define chromosomal locations that control these characteristics, recombinant inbred strains from diabetes-prone C57BL/6J (B/6J) and diabetes-resistant A/J strains were studied. Insulin levels and hyperglycemia correlated with two different regions of mouse chromosome 7 (two point LOD scores > 3.0). For insulin levels, 15 of 16 recombinant inbred strains were concordant with a region that contains the tubby mutation that results in hyperinsulinemia. For hyperglycemia, 19 of 23 strains were concordant with the D7Mit25 marker and 20 of 23 strains with the Gpi-1 locus on proximal mouse chromosome 7. Using more stringent criteria for hyperglycemia, 10 of 11 strains characterized as A/J or B/6J like were concordant with D7Mit25. This putative susceptibility locus is consistent with that of the glycogen synthase gene (Gys) recently suggested as a candidate locus by analyses of type 2 diabetes patients. Fractional glycogen synthase activity in isolated muscle was significantly lower in normal B/6J diabetic-prone mice compared with normal diabetic-resistant A/J mice, a finding similar to that reported in relatives of human patients with type 2 diabetes. These data, taken together, raise the possibility that defects in the Gys gene may in part be responsible for the propensity to develop type 2 diabetes.
M F Seldin, D Mott, D Bhat, A Petro, C M Kuhn, S F Kingsmore, C Bogardus, E Opara, M N Feinglos, R S Surwit
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 116 | 0 |
53 | 27 | |
Scanned page | 256 | 4 |
Citation downloads | 56 | 0 |
Totals | 481 | 31 |
Total Views | 512 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.