Exposure of beta-adrenergic receptors (BAR) to agonists often leads to a rapid loss of receptor responsiveness. The proposed mechanisms of such rapid receptor desensitization include receptor phosphorylation by either cAMP-dependent protein kinase or the specific beta-adrenergic receptor kinase (BARK), leading to functional uncoupling from adenylyl cyclase and sequestration of the receptors away from the cell surface. To evaluate the physiological role of such mechanisms, we have investigated whether rapid regulation of BAR occurs in the neonatal rat liver immediately after birth, a physiological situation characterized by a dramatic but transient increase in plasma catecholamines. We have detected a rapid, transient uncoupling of liver plasma membrane BARs from adenylyl cyclase (corresponding to a desensitization of approximately 45%) within the first minutes of extrauterine life, followed by a transient sequestration of approximately 40% of the BARs away from the plasma membrane. In agreement with such pattern of desensitization, we have detected (by enzymatic and immunological assays) rapid changes in BARK specific activity in different neonatal rat liver subcellular fractions that take place within the same time frame of BAR uncoupling and sequestration. Our results provide new evidence on the potential role of BAR desensitization mechanisms in vivo and suggest that they are involved in modulating catecholamines actions at the moment of birth. Furthermore, our data indicate that in addition to its suggested role as a rapid modulator of adrenergic receptor function at synapse, rapid BARK-mediated receptor regulation may have functional relevance in other tissues in response to high circulating or local levels of agonists.
I García-Higuera, F Mayor Jr
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 127 | 5 |
49 | 19 | |
Scanned page | 209 | 7 |
Citation downloads | 45 | 0 |
Totals | 430 | 31 |
Total Views | 461 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.