Arterial gene transfer represents a novel strategy that is potentially applicable to a variety of cardiovascular disorders. Attempts to perform arterial gene transfer using nonviral vectors have been compromised by a low transfection efficiency. We investigated the hypothesis that cellular proliferation induced by arterial injury could augment gene expression after liposome-mediated gene transfer. Nondenuded and denuded rabbit arterial strips were maintained in culture for up to 21 d, after which transfection was performed with a mixture of the plasmid encoding firefly luciferase and cationic liposomes. In non-denuded arteries, the culture interval before transfection did not affect the gene expression. In contrast, denuded arteries cultured for 3-14 d before transfection yielded 7-13-fold higher expression (vs. day 0; P < 0.005). Transfection was then performed percutaneously to the iliac arteries of live rabbits with or without antecedent angioplasty. Gene expression increased when transfection was performed 3-7 d postangioplasty (P < 0.05). Proliferative activity of neointimal cells assessed in vitro by [3H]thymidine incorporation, and in vivo by immunostaining for proliferating cell nuclear antigen, increased and declined in parallel with gene expression. These findings thus indicate that the expression of liposome-mediated arterial gene transfer may be augmented in presence of ongoing cellular proliferation.
S Takeshita, D Gal, G Leclerc, J G Pickering, R Riessen, L Weir, J M Isner
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 122 | 2 |
52 | 17 | |
Figure | 0 | 1 |
Scanned page | 348 | 4 |
Citation downloads | 48 | 0 |
Totals | 570 | 24 |
Total Views | 594 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.