To determine if the functional compensation in diffusing capacity of the remaining lung following pneumonectomy is due to structural growth, we performed morphometric analysis of the right lung in three adult foxhounds approximately 2 yr after left pneumonectomy (removal of 42% of lung) and compared the results to those in normal adult dogs previously studied by the same techniques. Diffusing capacity was calculated by an established morphometric model and compared to physiologic estimates at peak exercise in the same dogs after pneumonectomy. The major structural changes after left pneumonectomy are hyperinflation of the right lung, alveolar enlargement, and thinning of the alveolar-capillary tissue barrier. These changes confer significant functional compensation for gas exchange by reducing the overall resistance to O2 diffusion. The magnitude of compensation in diffusing capacity estimated either morphometrically or physiologically is similar. In spite of morphometric and physiologic evidence of functional compensation, there is no evidence of significant growth of structural components. After pneumonectomy, morphometric estimates of diffusing capacity are on average 23% higher than physiologic estimates in the same dogs at peak exercise. We conclude that the previously reported large differences between morphometric and physiologic estimates of diffusing capacity reflects the presence of large physiologic reserves available for recruitment.
C C Hsia, F Fryder-Doffey, V Stalder-Nayarro, R L Johnson Jr, R C Reynolds, E R Weibel
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 210 | 1 |
100 | 15 | |
Scanned page | 269 | 7 |
Citation downloads | 58 | 0 |
Totals | 637 | 23 |
Total Views | 660 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.