Previous studies have shown that a gene mapping in the inverted repeats of the L component of herpes simplex virus, type 1 DNA, designated as gamma (1) 34.5, was dispensable for growth in cells in culture but that the deletion mutant (R3616) and a mutant containing a stop codon (R4009) in each copy of the gene were incapable of replicating in the central nervous systems (CNS) of mice. Restoration of the deleted sequences restored the wild type virus phenotype. We report here that the gamma (1) 34.5 mutant viruses (R3616 and R4009) replicated in the vaginal tract of two different strains of mice and guinea pig, although both viruses were shed at lower titer and for fewer days than the wild type and restored viruses. Both R3616 and R4009 failed to replicate or cause significant pathology in the cornea of Balb/C mice or following intranasal inoculation of Swiss Webster mice. Analyses of sensory trigeminal and dorsal root ganglia innervating the site of inoculation indicated that the incidence of establishment of latency or reactivation from latency by R3616 and R4009 viruses was significantly lower than that determined for mice infected with wild type or restored virus. Thus, selective deletion of gamma (1) 34.5 gene abolished the capacity of the virus to spread from peripheral mucosal sites to the CNS or replicate in the CNS, and diminished the capacity of the virus to replicate at mucosal sites and, subsequently, establish latency, or be able to be reactivated ex vivo. The results of our studies may have direct implications for the development of genetically engineered herpes simplex virus vaccines.
R J Whitley, E R Kern, S Chatterjee, J Chou, B Roizman
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 190 | 6 |
53 | 40 | |
Figure | 0 | 1 |
Scanned page | 207 | 8 |
Citation downloads | 47 | 0 |
Totals | 497 | 55 |
Total Views | 552 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.