The skin is constantly exposed to sunlight and frequently develops sun-induced skin cancers such as basal cell carcinoma (BCC). These epidermal-derived tumors escape local immune surveillance and infiltrate the dermis, requiring surgical removal. We report here that in contrast to keratinocytes in normal skin (n = 4), BCC tumor cells (n = 6) strongly and diffusely express Fas ligand (CD95L), but not Fas antigen (CD95). This CD95L expression in vivo by BCC tumor cells is associated with peritumoral T lymphocytes that are undergoing apoptosis. Moreover, CD95L can be induced on normal cultured keratinocytes after exposure to ultraviolet-B light (UV-B) irradiation. This induction of CD95L was confirmed at the mRNA and protein levels using multipassaged human keratinocytes and a keratinocyte cell line. Keratinocytes induced to express CD95L acquired the functional capacity to kill a CD95-positive lymphocyte cell line. Whereas hyperplastic keratinocytes in untreated psoriatic plaques do not express CD95L on their plasma membrane, after UV-B treatment there is strong and diffuse keratinocyte CD95L expression that coincided in a temporal fashion with depletion of intraepidermal T cells in all five patients studied. Our data suggest a novel molecular pathway by which UV light can contribute to the ability of a skin cancer to escape from immune attack by cytotoxic T lymphocytes, and a previously unrecognized therapeutic mechanism of action for UV-B light in psoriasis via keratinocyte CD95L expression. Such immunological events involving CD95L provide new insight and opportunity for novel treatment approaches not only for cutaneous neoplasms but also for various T cell-mediated dermatoses such as psoriasis.
C Gutierrez-Steil, T Wrone-Smith, X Sun, J G Krueger, T Coven, B J Nickoloff
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 133 | 17 |
52 | 26 | |
Citation downloads | 42 | 0 |
Totals | 227 | 43 |
Total Views | 270 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.