The three isoforms of transforming growth factor-beta (TGF-beta) have previously been implicated in embryonic development of the heart as well as in repair of myocardial damage after ischemia/reperfusion injury. TGF-beta 1 has also been localized intracellularly to both mitochondria and contractile filaments of cardiac myocytes, although its role in these structures has not been defined. We now report that exogenous TGF-beta stabilizes the beating rate of neonatal rat cardiac myocytes cultured on fibroblast matrix, and sustains their spontaneous rhythmic beating in serum-free medium. Moreover, using blocking antibodies to TGF-beta, we show that endogenous TGF-beta secreted by these myocytes acts in an autocrine fashion to maintain their beating rate. In contrast, IL-1 beta, an inflammatory mediator secreted by immune cells during myocardial injury, inhibits the beating of cardiac myocytes, and TGF-beta can overcome this inhibition. The antagonistic effects of TGF-beta and IL-1 were not observed when the myocytes were cultured on gelatin, as compared to native fibroblast matrix. The data indicate that TGF-beta is an important regulator of contractile function of the heart and have significant implications for understanding cardiac physiology in health and disease.
A B Roberts, N S Roche, T S Winokur, J K Burmester, M B Sporn
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 139 | 0 |
49 | 18 | |
Scanned page | 203 | 3 |
Citation downloads | 51 | 0 |
Totals | 442 | 21 |
Total Views | 463 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.